OVERVIEW OF THE STATE OF THE ART IN METHANE MITIGATION

David Yañez-Ruiz

Spanish Research Council (CSIC), Granada, Spain david.yanez@eez.csic.es

OVERVIEW OF THE STATE OF THE ART IN METHANE MITIGATION

- Microbial production of methane
- Main areas of action
 - Feed additives
 - Vaccines development
 - Animal breeding

Enteric methane production

The rumen microbiome

Methane mitigation strategies

CSIC

ENTERIC METHANE MITIGATION STRATEGIES

Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050

Considerations for a successful CH₄ mitigation strategy

- Efficacy
- Cost
- Regulatory approval
- Adoption / C accounting
- Consumer acceptance
- Longevity consistency
- Compatible with production system

An evaluation of evidence for efficacy and applicability of methane inhibiting feed additives for livestock

November 2021

Hegarty et al., 2021

Plant secondary compounds: Condensed/hydrolysable tannins, saponins, essential oils

- Inhibit protozoa, some methanogens
- Decrease digestibility and DMI

• Very few in vivo showing reduced CH4

CSIC

Plant secondary compounds: Condensed/hydrolysable tannins, saponins, essential oils

....

- Non-specific antimicrobial activity
- Numerous sources and levels tested in vitro for CH₄ effects
- Mainly: thyme, oregano, cinnamon, and garlic or their (thymol, carvacrol, cinnamaldehyde, and allicin)
- Varying responses (some positive)
- Several commercial blends, very few in vivo studies confirm anti methanogenic property

Plant secondary compounds: Condensed/hydrolysable tannins, saponins, essential oils

J. Dairy Sci. TBC https://doi.org/10.3168/jds.2023-23406

© TBC, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Effect of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows

Sanne van Gastelen,¹* David Yáñez-Ruiz,² Hajer Khelil-Arfa,³ Alexandra Blanchard,³ and André Bannink¹

- 2 weeks adaptation
- | H₂
- Modest effect (\approx 5 %)
- No specific registration/approval as CH₄ inhibitor

CSIC

2. Feed additives: Nitrate

Deswysen, Velddriel (NL); Walter Jan

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

Jozef Gerrits, Renkum (NL); Jan

Alfred Leng, Yandina Creek (AU)

U.S.C. 154(b) by 0 days.

13/386,368

Jul. 23, 2010

(*) Notice:

(21) Appl

(22) PCT Filed:

Dijkstra, Wageningen (NL); Ronald

ing Reference U (Leng) to at least May 30, 2009.4

tents in Subspecies of Brassic

Leng RA (2008 or 2009). Th enteric methane production i Commonweath Gov't of Aust

Allen D. Tillman et al., "Ni Journal of Animal Science

p. 1576-1581.*

XP-002556351. R. A. Leng, "The Potential

Siddiqi et al. (1992). Increased exposure to dietary amines and nitrate

in a population at high risk of oesophageal and gastric cancer in

Jara

Kashmir (India). Carcinogenesis, v13(8), p. 1331-1335.* Kurilich AC et al. (1999). Carotene, Tocopherol, and Ascorbate Con-

- Nitrate at a maximum level of 1% of the total diet DM (0.3 g • nitrate /kg BW/d)
- 10 % reduction CH4 •
- Feed ingredient national regulatory /accounting contexts •

2. Feed additives: probiotics

CSIC

2. Feed additives: H₂ aceptors

2. Feed additives: H₂ aceptors

(Romero et al., 2022 Huang et al., 2022)

Other combinations??

3. Feed additives: Bovaer®

CSIC

3. Feed additives: Bovaer®

CSIC

- > 50 studies published
- Dose response. 60 mg/kg DM
- Decreased effectiveness as NDF increases
- Avg. 30% decrease in dairy, 25 30% beef backgrounding, 40 80% beef feedlot finishing
- Effective in long term studies, no animal production responses
- Current form must be added to the diet (not for grazing animals)

24-02-2022

DSM receives landmark EU market approval for its methane-reducing feed additive

3. Feed additives: Asparagopsis

• Red tropical seaweed (Hawaii, Mediterranean, Australia)

- Can be grown in tanks, dried or extracted
- Blocks the last step of methanogenesis in the rumen
- Bioactive component is bromoform (haloform, similar to chloroform)
 - Animal/human health concerns (bromoform is probable human carcinogen; EPA, 2000)
 - Residues of bromoform have been detected in milk in some (Stefenoni et al., 2021), but not other studies (Li et al., 2016; Kinley et al., 2020; Roque et al., 2021).
- Up to 90% reduction in methane (beef, grain diets), lack of data on animal production
- Emissions associated with producing, harvesting, drying & shipping may offset CH₄ reduction
- Alternative approaches to bromoform production yeast??

3. Feed additives: Asparagopsis

Romero et al. Journal of Animal Science and Biotechnology (2023) 14:133 https://doi.org/10.1186/s40104-023-00935-z Journal of Animal Science and Biotechnology

Open Access

RESEARCH

Rumen microbial degradation of bromoform from red seaweed (*Asparagopsis taxiformis*) and the impact on rumen fermentation and methanogenic archaea

Bromoform residues

 $CHBr_3 \rightarrow CH_2Br_2 \rightarrow CH_3Br \rightarrow CH_4 + Br$

3. Feed additives: Asparagopsis

Vertice Corbon Resultion About Media Science Corbon Resultion About Media Introducing the most effective burp suppressant for cows: Brominata™

- Longer term studies ?
- Grazing systems

Time of the day

Vaccines development

Development of vaccine: collaboration between Immunology, Genomics & Ecology

Immunology: Identify methanogen proteins that elicit an immune response (Western blotting). Generate antisera for testing.

Genomics: Predict methanogen proteins (from analysis of genomic sequences) that could result in immune responses, and are essential for methanogen growth (Bioinformatics)

Rumen ecology: Test impact of anti-methanogen antibodies on methanogens (in

vitro and in vivo)

Vaccines: the rumen specificity

CSIC

Vaccines: in vitro vs. in vivo

^	ப	Λ
C	П	4

		-	-		Booster	CSIC
	Methane Production	Compared Groups	Conditions	References		
In vitro	12.8/14.8% ¹ methane reduction in vitro	Sheep vaccinated with methanogen mix vs.	Primary vaccination with booster 28 days after primary Methane production from rumen liquor incubated for 24 h	[78]	28 days	
		prevaccinated/vaccinated with adjuvant or PBS			20 00 3	
In vitro	26.26% ¹ methane reduction in vitro	Sheep vaccinated with methanogens mix vs. adjuvant and PBS	Primary vaccination with booster 28 days after primary Methane production from rumen liquor incubated for 24 h, corrected for dry-matter intake			
<u>In vivo</u>	Unsuccessful in vivo	Sheep vaccinated with mixes of three or seven methanogens vs. adjuvant and PBS	Primary vaccination Methane production on day 56 or 70 after primary			
<u>In vivo</u>	12.8% methane reduction in vivo 7.7% methane reduction in vivo, corrected for dry-matter intake	Sheep vaccinated with mix of three methanogens vs. discussed DBC	Primary vaccination with revaccination	^[79] 153 days	153 days	
<u>In vivo</u>	Unsuccessful in vivo	Sheep vaccinated with mix of seven methanogens vs. adjuvant and PBS	Methane production 180–195 days after primary			
<u>In vivo</u>	Unsuccessful in vivo	Sheep vaccinated with three methanogens vs. adjuvant Sheep vaccinated with three methanogens plus additional methanogens vs. adjuvant	Primary vaccination with booster — 42 days after primary Methane production 28 days after vaccination	[80]		
In vitro	Unsuccessful in vitro	Three semipurified IgY from hens vaccinated with three methanogens vs. semipurified IgY from prevaccinated hens	Primary vaccination with booster on Days 21, 42, 84, and 133 Methane production from rumen liquor incubated for 24 h		21, 42, 84 and 133 days	
In vitro	20% methane increase with anti- <i>Methanobrevibacter ruminantium</i> IgY 15% methane increase with anti- <i>M. smithii</i> IgY corrected for dry-matter disappearance	Three freeze-dried egg powders from hens vaccinated with three methanogens vs. freeze-dried egg powder from prevaccinated hens	Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 3 h			
In vitro	 34% methane reduction with anti-<i>M. smithii</i> IgY 52% methane reduction with anti- <i>Methanosphaera stadtmanae</i> IgY 66% methane reduction with their combination, corrected for dry-matter disappearance 		Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 12 h	[82]	21, 42, days	
In vitro	Unsuccessful		Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 24 h			
In vitro	49–69% reduction, corrected for dry-matter disappearance	Freeze-dried egg powder from pre-vaccinated hens vs. without egg powder addition	Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 3, 12, and 24 h		28 and 103 days	Baca-González et al., 2020, Vaccines
In vivo			Primary vaccination with booster			VULLINES

CSIC

_ .

Animal breeding

Re-Livestock resilient farming systems **Facilitating innovations for resilient livestock farming systems**<u>www.re-livestock.eu</u>

Australia

400 Brahman, composite cattle, Angus (4,250 cattle by 2026) Microbiome information

8,000 Holstein cows (100 herds: 15,000 cows) Microbiome: 1,000 cows

7,000 Holstein cows

2. In vivo testing: chambers

2. In vivo testing: Greenfeed

Summary

- Many considerations for a succesful development of feed additive
- Three main categories
 - direct archaea inhibitors (> 30 %) No improvement in productivity
 - combinations ?
- Longer term stiudies
- Grazing systems
- Regulatory/registration constraints

• Vaccine development

Thank you

david.yanez@eez.csic.es

